لینک دانلود(پاورپوینت ساختمان داده‌ها و الگوريتم 387 اسلاید)

پاورپوینت ساختمان داده‌ها و الگوريتم 387 اسلاید|لینک دانلود|اُ اِچ|42085305|پاورپوینت ساختمان داده‌ها و الگوريتم,پاورپوینت در مورد ساختمان داده‌ها و الگوريتم,ساختمان داده‌ها و الگوريتم,دانلود پاورپوینت ساختمان داده‌ها و الگوريتم
در حال حاظر شما فایل با عنوان پاورپوینت ساختمان داده‌ها و الگوريتم 387 اسلاید را دنبال می کنید .

دانلود پاورپوینت ساختمان داده‌ها و الگوريتم


مشخصات فایل
تعداد صفحات387حجم680/306 کیلوبایت فرمت فایل اصلیpptx
توضیحات کامل
دانلود پاورپوینت ساختمان داده‌ها و الگوريتم جهت رشته کامپیوتر در قالب 387 اسلاید و با فرمت pptx بصورت کامل و جامع و با قابلیت ویرایش

ساختمان داده روشی است برای معرفی و دستکاری داده و کلیه برنامه های معرفی داده برای معرفی داده نیازمند یک الگوریتم میباشد.روش های طراحی الگوریتم نیازمند پیشرفت برنامه هایی است که برای نگهداری داده است.در علوم کامپیوتر مطالعه ساختمان داده ها مهم وضروری میبا شد.

فهرست مطالب
در مورد ساختمان داده
Perquisites
Sorting
Sort metods
اضافه کردن یکinsert an element
Insertion sort
Complexityیا پیچیدگی
شمارش مقایسه ای
Compration count
Worst-case Compration count
Step count
محاسبه پیچیدگی در مرتب سازی درجی
Faster Computer Vs Better Algorithm
انواع داده
Data object توضیحات تکمیلی
Data Structure
Linear (or Ordered) lists
مثالهایی از لیست های خطی
Linear list Oprations-size
Linear list Oprations-get(the index)
Linear list Oprations-indexof (the element)
Linear list Oprations-remove(the index)
Data structure specificatio
Liner List Abstaract Data Type
Data Representation Methods
Linear List Array Representation
Add/Remove An Element_2
Length of Array element
Liner List Abstaract Data Type
Linear List As Java abstract Class
Linked Representation
Memory Layout
Linked Representation
Normal Way To Draw A Linked List
Node Representation
Constructors Of ChainNode
Remove An Element
The Class Chain
Constructors
The Method is Empty
The Method size
The Method checkIndex
The Method get
The Method indexOf
Removing An Element
Remove An Element
One-Step add(0;’f’)
Two-Step add(3;’f’)
Chain With Header Node
Empty Chain With Header Node
Circular List
Doubly Linked List
Doubly Linked Circular List
Doubly Linked Circular List With Header Node
Empty Doubly Linked Circular List With Header Node
1D Array Representation In C; and C++
Space Overhead
2D Arrays
Rows Of A 2D Array
Columns Of A 2D Array
Columns Of A 2D Array
2D Array Representation In C and C+
2D Array Representation In Java; C; and C++
Space Overhea
Row-Major Mapping
Sparse Matrices
Single Linear List Example
Array Linear List Representation
Single Chain
One Linear List Per Row
Orthogonal Lists
Stacks
Stack Of Cups
The Interface Stack
Parentheses Matching
Towers Of Hanoi/Brahma
Recursive Solution
Derive From A Linear List Class
Derive From ArrayLinearList
Derive From Chain
empty() And pee
push(theObject) And pop
Linked Stack From Scratch
Queues
Bus Stop Queue
The Interface Queue
Derive From ArrayLinearList
Derive From ExtendedChain
Custom Array Queue
Add An Element
Remove An Element
Moving rear Clockwise
Empty That Queue
A Full Tank Please
Nature Lover’s View Of A Tree
Computer Scientist’s Vie
Linear Lists And Trees
Hierarchical Data And Trees
Binary Tree
Differences Between A Tree & A Binary Tree
Arithmetic Expressions
Operator Degree
Infix Form
Operator Priorities
Tie Breaker
Infix Expression Is Hard To Parse
Unary Operators
Postfix Evaluation
Merits Of Binary Tree Form
Binary Tree Properties & Representation
Minimum Number Of Nodes
Number Of Nodes & Height
Full Binary Tree
Numbering Nodes In A Full Binary Tree
Node Number Properties
Complete Binary Tree With n Nodes
Binary Tree Representation
Array Representation
Right-Skewed Binary Tree
Linked Representation
The Class BinaryTreeNode
Linked Representation Example
Binary Tree Traversal Methods
Binary Tree Traversal Methods
Binary Tree Traversal Methods
Preorder Traversal
Preorder Of Expression Tree
Inured Traversal
Postorder Traversal
Traversal Applications
Level-Order Example (visit = print)
Inorder And Preorder
Inorder And Postorder
Inorder And Level Order
Priority Queues
Min Priority Queue
Max Priority Queue
Complexity Of Operations
Applications
Complexity Of Sortin
Min Tree Definition
Min Tree Example
Min Heap Definition
Min Heap With 9 Nodes
Heap Height
Moving Up And Down A Heap
Putting An Element Into A Max Heap
Complexity Of Put
Removing The Max Element
Complexity Of Remove Max Element
Initializing A Max Heap
Time Complexity
Extended Binary Trees
An Extended Binary Tree
Binary Search Trees
Definition Of Binary Search Tree
Example Binary Search Tree
The Operation get
The Operation put
The Operation remove
Remove From A Leaf
Remove From A Leaf (contd.)
Remove From A Degree 1 Node
Remove From A Degree 1 Node (contd.)
Remove From A Degree 2 Node
Remove From A Degree 2 Node
Another Remove From A Degree 2 Node
Remove From A Degree 2 Node
Indexed Binary Search Tree
Example Indexed Binary Search Tree
get(index) And remove(index)
get(index) And remove(index)






"

مطالب دیگر:
🔑تحقیق هنر در ایران🔑پاورپوینت نقش استانداردسازي در توسعه صنعت انفورماتيك پزشكي🔑تحقیق سفالگری🔑تحقیق امام خمینی و هنر🔑تحقیق اختراع نوشتن🔑تحقیق دست بافته های قشقايی🔑تحقیق سابقه قالي بافي در بيرجند🔑تحقیق فلسفه هنر از دیدگاه اسلام🔑تحقیق قالی بافی🔑تحقیق موسیقی و هنر🔑تحقیق نقوش فرش ايران و چگونگي طبقه بندي آن🔑تحقیق فرهنگ مردمی، موسیقی و سواد رسانه ای🔑تحقیق مصارف روي در و پنجره‌ هاي فلزي🔑تحقیق هنر متجدد و بازاري🔑پاورپوینت داده کاوی و کاربرد آن🔑پاورپوینت تقویت کننده‌ های نوری🔑تحقیق زندگي نامه شهيد دكتر مصطفي چمران🔑تحقیق موتزارت، نابغه دنياي موسيقي🔑تحقیق انیشتین🔑تحقیق خیام شاعر، خیام فیلسوف🔑تحقیق دانشمندان نيشابور🔑تحقیق زندگي نامه راسل🔑تحقیق ژوزف استالین🔑تحقیق سلیمان راوش🔑تحقیق سيدجمال الدين اسد ابادي